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1. Introduction 

The Centre of Excellence for Development Impact and Learning (CEDIL) has recently 
funded several studies that use machine learning methods to enhance the inferences 
made from impact evaluations. These studies focus on assessing the impact of complex 
development interventions, which can be expected to have impacts in different domains, 
possibly over an extended period of time. These studies therefore involve study 
participants being followed up at multiple time-points after the intervention, and typically 
collect large numbers of variables at each follow-up. The hope is that machine learning 
approaches can uncover new insights into the variation in responses to interventions, and 
possible causal mechanisms, which in turn can highlight potential areas that policy and 
planning can focus on. 

This paper describes these studies using machine learning methods, gives an overview of 
the common aims and methodological approaches used in impact evaluations, and 
highlights some lessons and important caveats. The scope of the paper is limited to the 
use of supervised learning models in the estimation of heterogeneous treatment effects 
and the investigation of potential mediating mechanisms, since these are the areas of 
focus for the CEDIL-funded studies discussed here. We do not consider other machine 
learning methods, such as unsupervised learning or reinforcement learning, though these 
may be used in other areas of impact evaluation. 

In the field of statistical modelling, the popularity of machine learning methods has grown 
hugely in recent years. Innovations in modelling, in particular greater flexibility and the 
ability to accommodate large numbers of variables, have enabled researchers to be more 
ambitious in modelling relations between input variables and outcomes/responses. The 
availability of “big data” has encouraged this, though the real gains from flexible machine 
learning approaches come from data complexity rather than size (in particular, non-linear 
relationships and interactions between variables). Additionally, the availability of powerful 
software with many contributed packages has made these models accessible to a wide 
user-base. 

In the context of modelling treatment effects and mechanisms, there are two main 
benefits of statistical machine learning models as compared with traditional statistical 
approaches: (1) flexible modelling and (2) the use of regularisation or latent structure to 
accommodate large numbers of variables. 

Flexible modelling (often misleadingly called non-parametric modelling) allows for 
modelling associations between variables without making strong assumptions, such as 
linearity. Flexible models are in fact highly parameterised, so that the model can closely 
track non-linear patterns and interactions in the data. Such models can be so complex that 
it can be difficult to interpret the relations between variables. For this reason, machine 
learning traditionally focused on predicting outcome variables as a black box function of 
input variables – a task in which it succeeds very well. However, statistical models with 
latent structure and which make use of interpretable machine learning approaches give us 
a way to gain insight into the most important input variables. This is essential when 
seeking to make causal inference, where we want to understand which variables are 
impacting the development of relevant outcomes. The benefit of flexible modelling in 
impact evaluation is the ability to let the data discover the form of the relations between 
the estimated treatment effects and baseline characteristics. 



cedilprogramme.org  6 
  

The second component of machine learning models is the ability to model large numbers 
of variables in a single model. The key to this is incorporating regularisation in order to 
prevent the model overfitting to the data that are used to estimate the model. Traditional 
machine learning methods use sample-splitting and resampling methods to control 
overfitting. Statistical machine learning models can impose smoothing and shrinkage on 
parameter estimates through penalty terms or equivalently Bayesian priors. The benefit of 
including large numbers of variables in impact evaluation is the ability to explore potential 
causal factors and mediators in a data-driven manner. 

Causal inference is used in impact evaluation to establish the causal effects of the 
exposure of interest, and further to identify plausible explanations for these effects in 
terms of baseline or intermediary variables. For example, as well as characterising the 
causal effects of interventions on outcomes, we may be interested in identifying the most 
important variables that modify the causal effect of the exposure or intervention. The 
benefit that machine learning approaches can bring here is to enable the inclusion of large 
numbers of potential confounders and effect modifiers in a single analysis. Further, the 
relations between outcomes, confounders and effect modifiers can be modelled in a 
flexible manner, without imposing restrictive parametric assumptions. 

The main theme which emerges across all the CEDIL-funded studies is that of estimating 
heterogeneous treatment effects. Going beyond the average treatment effect, 
investigators want to find out which individuals can best benefit from a given intervention. 
Thus the aim is to characterise individual treatment effects through measured baseline 
variables. In a potential outcomes framework, the individual treatment effects can be 
conceptualised as the difference in potential outcomes for different treatment regimes. 
However, these can never be directly observed: they can only be estimated by combining 
observations from multiple individuals who are assumed to be in some sense equivalent. 
This equivalence is defined by having similar characteristics, and conditional treatment 
effects can be estimated within groups of people with similar covariate values (after 
making appropriate causality assumptions). 

Hence, the problem becomes that of estimating conditional average treatment effects 
(CATEs) as functions of observed covariates. Since the CATEs themselves are not directly 
observed, the statistical modelling problem involves simultaneous estimation of the CATEs 
and their functional relationship on the covariates. Machine learning models and other 
statistical models with latent structure can provide a way to do this. 

Section 2 of this paper gives a brief description of each of the studies, outlines the 
structure and scope of the studies' designs, and discusses common research aims and 
methods across the studies. Sections 3 gives an overview of the estimation of CATEs using 
machine learning, and reflects on questions of interpretation. Section 4 discusses possible 
ways to gain insight into considerations of context and mechanisms. Section 5 discusses 
further methodological challenges and future directions, and Section 6 summarises our 
main conclusions. 
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2. CEDIL studies using machine learning 

CEDIL is funding three studies that aim to use machine learning methods in impact 
evaluation. At the time of writing, these studies are ongoing and have not produced their 
final results. In this paper we discuss the aims and methodology proposed by the studies 
in the context of machine learning. 

All three of the studies are evaluating complex real-world interventions, which typically 
exhibit substantial heterogeneity across subjects, due to large differences in individual and 
environmental factors affecting study participants. It is therefore of general interest to 
investigate whether there are groups of individuals who respond better than others to a 
given intervention. Large numbers of variables are available to the studies, which they can 
use to characterise better or worse responders. These can be split into baseline variables 
and variables collected during follow-up. Therefore, all three CEDIL-funded studies aim (1) 
to estimate and interpret heterogeneous treatment effects using baseline covariates and 
(2) to investigate possible mediation mechanisms using follow-up variables. The focus of 
interest is to investigate how machine learning methods can contribute to pursuing these 
research questions. Three of the studies providing data for the machine learning research 
have already been completed or are ongoing. Here we briefly describe the designs of these 
studies in order to highlight common statistical issues. In later sections we put into context 
the analysis methods proposed by the three studies 

Chioda and Gertler are investigating the impact of the two youth skills training 
programmes in Uganda: Educate! (sample size: n = 1,942) and SEED (sample size: n = 
4,400). The Educate! programme is a cluster randomised trial that is being delivered 
through 48 schools in the most populous districts of Uganda, and lasts for two years. The 
SEED intervention is a three-week-long intensive course, with participants and controls 
randomised from a large pool of applicants across the country. Participants have been 
followed up at four years and will be followed up again at eight years. The outcome 
variables in these studies are educational investments, economic outcomes and social 
spillovers. Potential mediators are the primary targets of the skills programmes (a mix of 
soft and hard skills). Demographics and soft skills measured at baseline are used as 
confounders and variables to characterise effect heterogeneity. 

Handa et al. are studying four interventions involving unconditional cash transfers: the 
Malawi Social Cash Transfer Programme SCTP (n = 3,530), the Zambia Child Grant 
Programme (n = 2,512), the Ghana Livelihood Empowerment Against Poverty (n = 2,497) 
and the Zimbabwe Harmonised Social Cash Transfer Programme (n = 2,063). The first two 
studies of these interventions are randomised controlled trials, and the last two use 
matched designs. All are household-level studies: the first two focus on labour-constrained 
households and the last two on households with young children. The studies had one, two 
or four follow-ups in the first few years following baseline. The outcome variables are 
indicators of household consumption. Potential mediators of the effect of the 
interventions on household consumption include a large set of secondary variables 
relating to the macroenvironment (market access, climate, topology and land cover), as 
well as financial and other assets, and agricultural activities. Baseline confounders and 
effect modifiers include demographics and psychological indicators, as well as financial 
and other assets. 

Baliki et al. are focusing on two intervention packages delivered by the Food and 
Agriculture Organization of the United Nations (FAO) in Syria, which is running over two 
years. The unit of analysis is households (n = 3,907), in 312 villages. Interventions are at the 
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village level (the rehabilitation of local agricultural infrastructure, in the form of irrigation 
and drainage systems) and at the household level (providing agricultural assets in the form 
of crop and vegetable seeds and livestock kits). The study follows a matched design at the 
village level. Households will be followed up yearly, resulting in two pre-intervention and 
three post-intervention time-points. Outcome variables are welfare indicators (food 
security, diet quality, biomarkers of maternal and child nutritional status, and economic 
well-being), behavioural indicators (such as agricultural and livelihood decisions) and 
stability indicators, including exposure to violence. Potential mediators to be collected in 
post-intervention follow-ups include measures of agricultural productivity derived from 
satellite data. Baseline variables used as confounders and explanatory variables include 
household and farmland characteristics, district demographics and measures of 
exogenous shocks during the year before the intervention. 

The data structure of the studies described above can be expressed in a common 
framework, which naturally allows for similar research questions and for raising similar 
statistical issues. 

Interventions: All three studies considered here involve well-defined interventions, which 
can be treated as exogenous. Most evaluation designs involve some level of 
randomisation, though there are different specific designs, including randomised control 
trials, matched design and discontinuity design. This allows the formulation of causal 
questions, in particular estimating treatment effects for the intervention in question. 

Outcome variables: The threestudies consider large numbers of outcome variables, 
across multiple domains. Many of these variables will reflect different aspects of the same 
underlying traits, and hence possess an underlying structure. The CEDIL studies, and other 
studies in the literature, currently tend to treat outcome variables separately, even if they 
are known to be related. In addition to the latent correlation structure between different 
outcome measures, there is also the time-dependent structure. All studies have at least 
one pre- and one post-intervention data collection, with most having multiple post-
intervention follow-ups, with outcome variables collected at more than one time-point. 
Hence the evolution of treatment effects can be assessed over time. 

Baseline covariates: All of the studies have large numbers of variables measured at 
baseline. This allows for the investigation of which individuals respond best or worst to the 
interventions, using baseline covariates to characterise the responders. The primary use of 
machine learning methods in these studies is to accommodate baseline covariates in the 
estimates of CATEs, which are interpreted as heterogeneous treatment effects. 

Time-varying covariates: The studies also measure many covariates at later follow-ups. 
The investigators aim to use these intermediate variables to further explore possible 
treatment mechanisms, either through post hoc exploratory analysis comparing estimated 
CATEs with intermediate variables, or by causal mediation analysis treating time-varying 
covariates as potential mediators. 

Multi-level structure: Several studies involve grouped data – for example, individuals in 
villages or in schools – with different balances between group size and sample size within 
groups. This is an important aspect of the design, which should be accounted for in the 
analysis, with respect to exposures and outcomes at different levels, and for estimating 
uncertainty. 
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3. Estimating heterogeneous treatment effects 

Machine learning has become popular in causal inference as a way to estimate so-called 
heterogeneous treatment effects (HTEs), in order to gain further insight into who may or 
may not benefit from a particular intervention. It is important to understand that these 
HTEs are in fact CATEs, defined in relation to a specific set of explanatory variables. 
Heterogeneity of treatment effects cannot be estimated independently of a choice of 
potential explanatory variables. 

Average treatment effect (ATE) is defined as the comparison between potential outcomes 
across the different treatment groups. For a binary treatment and continuous outcomes, 
the average treatment effect is usually defined as the difference in expected values: 

 
where Y (a) is the potential outcome for treatment group a. The potential outcome for an 
individual under treatment a is the (possibly counterfactual) outcome that individual would 
experience if they received treatment a. Since only one potential outcome can be observed 
for each individual, causal inference proceeds by making certain assumptions (see for 
example Kreif and DiazOrdaz, 2019), under which the ATE is then given by the expected 
difference in outcomes between people in different treatment groups: 

 
where A and Y are the treatment and outcome variables, respectively. 

CATEs (here denoted by τ ) are defined as the treatment effect for people with a given set 
of covariate values: 

 
where X may stand for a set of several covariates. Within a group of people with identical 
covariate values, estimation of the CATE can proceed exactly as for the ATE. The same 
causal assumptions are made, and the CATE is estimated by comparing outcomes between 
individuals in different treatment groups: 

 
The CATE is an expectation, conditional on covariate values. By definition, individuals with 
identical covariate values must have identical CATEs. In a study with pre-specified groups 
of people with identical covariate values, which could happen for example if the covariate 
set is a small number of categorical covariates, the CATEs can be directly estimated by the 
differenced averages with groups. However, in large-scale intervention studies with many 
variables and mixed data types, there will not usually be any obvious pre-specified groups. 
Here the use of flexible modelling strategies can help to identify relevant groupings of 
study participants, or, as is usually done, to model the CATEs as smooth functions of the 
available covariates. 

One way to identify groups of participants in a data-driven way is to use decision trees. A 
decision tree is a statistical model in which a study sample is partitioned into groups which 
share similar covariate values and similar outcome values. Decision trees are sometimes 
used to provide simple, interpretable models of outcome/response variables in terms of a 
number of covariate/input variables. Classification trees model the probabilities of 
categorical outcomes, while regression trees model the expected values of continuous 
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outcomes. The leaves of the tree correspond to groups of individuals with similar 
covariates and similar outcomes. Hence a decision tree model provides a data-driven 
partition of the study sample into groups of individuals based on covariate values, who 
also share similar outcomes. The estimation procedure for standard decision trees 
maximises the difference in average outcomes between leaves. Random forests are 
ensembles of decision trees where the predicted outcome is modelled as an average over 
many trees. This provides a smooth, flexible model of predicted outcomes. 

Causal decision trees have been developed to identify relevant groupings of people for 
estimating CATEs (Athey and Imbens, 2016). In the causal inference framework, the 
outcome in the tree model is not a single observed variable for each individual, but the 
CATE τ (x), which is an unknown parameter of the model. In contrast to traditional decision 
trees, the estimation procedure for causal trees maximises the predicted average 
treatment effect difference between leaves. The machine learning aspect of trees comes in 
the exploration of the space of data partitions. The data partition is a parameter of the 
model and must be estimated, along with the CATEs themselves. A partition of the data 
sample can be completely specified by a vector of group labels z, where zi is the label of 
the group individual i belongs to. Thus, the learning algorithm must iterate between 
estimating the partition z and the CATEs τ (z). The partition z is a structural parameter, and 
as such needs careful modelling to avoid overfitting. This can be done by using sample-
splitting methods or Bayesian approaches. Athey and Imbens (2016) use a sample-splitting 
method where the structure of the tree is estimated on one subsample of the data and the 
CATEs are estimated on a different subsample. This is referred to as honest estimation. 

Another popular approach is to use causal forests, which are ensemble averages of many 
tree estimators. These, again, can be estimated in different ways, including resampling 
methods (Wager and Athey, 2018) and Bayesian model averaging (Hill, 2011). Causal 
forests average over multiple trees, and therefore can produce a different CATE for each 
individual. However, these constructed CATEs should be seen as smooth functions of the 
covariates. By extending the tree-based models to forest-based models, the partition of 
the study sample into groups is lost. The forest approach provides a smoothed flexible 
functional form for the CATE in terms of covariate values. Note that other flexible 
modelling approaches can be used for this purpose, such as Gaussian processes or neural 
networks. 

More recently, however, the focus in the causal inference literature has turned to methods 
which model so-called transformed outcomes: combinations of variables which allow the 
use of estimated propensity score functions to balance the covariates between treated 
and control participants, and which often possess some type of double robustness 
property. One example of a transformed outcome is given by: 
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where e(X) is the propensity score P (A = 1|X) and µa(X) is the conditional expectation of the 
outcome in treatment group a, i.e. E(Y |A = a, X). The estimator based on this expression 
combines the standard inverse probability weighted estimator (IPWE) and the direct estimator 
using the outcome model (µ1(X) − µ0(X)), and is robust to mis-specification of either the 
propensity score model or the outcome model. 

This expression for τ (X) can be estimated using plug-in estimators of µ0(X), µ1(X) and e(X). In 
order to obtain HTEs, flexible machine learning models can be used for these plug-in 
functions. Using this approach (rather than modelling τ directly as a function of X) has the 
added advantage that existing machine learning software can be used to obtain these 
functions, since these are obtainable using observable data. A recent approach using different 
forms of transformed outcomes is the R-learner (Chernozhukov et al., 2018; Nie and Wager, 
2021), which first constructs transformed outcomes using plug-in estimators found using 
machine learning prediction algorithms, and then regresses those transformed outcomes on 
the covariates to obtain estimates of τ as a non-linear function of the covariates. The 
regression in the second step may also be carried out using flexible models. The DR-learner 
(Kennedy, 2022) uses this approach with the doubly robust transformed outcome referred to 
above. 

Bayesian models have also been developed using the ideas behind transformed outcomes to 
reparametrise the likelihood in order to put flexible data-driven priors on both τ and the 
propensity score. Putting flexible priors on τ is equivalent to modelling the unknown CATEs 
using causal forests, but modelling the propensity scores at the same time aims to improve 
the robustness to mis-specification, as in classical, non-probabilistic machine learning 
approaches. Hahn et al. (2020) use Bayesian additive regression trees (BART) to model τ, µ0 
and e. Zaidi and Mukherjee (2018) use the doubly robust transformed outcome referred to  
above, with Gaussian process priors for flexible modelling of both the direct estimator µ1(X) − 
µ0(X) and the IPWE. 

All three of the CEDIL-funded studies are using or have proposed to use causal trees or causal 
forests to estimate CATEs using baseline variables. Some studies involve multiple outcomes, 
possibly measured at more than one follow-up. To date, most research estimating CATEs 
treats each outcome variable separately. 
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4. Investigating contextual factors and mechanisms 

The second major area of interest for all three of the CEDIL-funded studies discussed here is 
to further elucidate the mechanisms by which the affected population benefit from the 
intervention. This aim can be separated into (1) characterising people who respond well or 
less well to the intervention in terms of pre-intervention variables, and (2) identifying which 
post-intervention variables might be mediating the effect of the intervention. Note that 
“responders” here refers to individuals whose outcomes improved due to the intervention, 
even if they received only a group-level intervention. 

The first of these aims is stated in the project proposals as identifying better-responding and 
worse-responding individuals. Since the HTEs or CATEs described above are constructed using 
the pre-intervention (baseline) variables, this aim is equivalent to identifying the baseline 
variables which contribute to variation in HTEs. These can be seen as effect modifiers of the 
intervention effect. Thus, characterising individuals as better or worse responders in terms of 
their estimated HTEs is equivalent to identifying people with particular values/ranges of the 
effect modifiers. 

Therefore, in order to identify and characterise better and worse responders, we need to be 
able to identify which of the pre-intervention variables are the most important for explaining 
the variability in the HTEs. The issues involved in identifying the most important effect 
modifiers are the same as those involved in variable importance/feature selection in any 
statistical or machine learning inference scenario. Modern machine learning algorithms 
usually provide variable importance measures, which characterise the effect of leaving a 
particular variable out of the model. These would be the most direct measures for deciding 
which are the most important pre-intervention effect modifiers. However, it may also be 
useful to perform some simple analyses comparing the estimated CATEs with the baseline 
variables directly, using, for example, linear models or hypothesis tests. Machine learning 
methods can provide complex non-linear functions which are not necessarily straightforward 
to summarise. Post-analysis summary statistics and hypothesis tests may be useful to give an 
overview of which baseline variables are the most relevant. 

The post-intervention variables may be contextual factors or individual time-varying 
covariates, measured at intermediate time-points (after the conclusion of the intervention). 
Methodologically, two broad types of approach are used to investigate potential mediating 
variables. Firstly, there is the data-driven approach, which proposes to use flexible machine 
learning models to explore the relations between estimated HTEs (CATEs) and the post-
treatment variables of interest. These can be seen as exploratory analyses which can be used 
to suggest further directions of research and risk factors to focus on. The advantage of taking 
this approach is that large numbers of potential mediators can be explored simultaneously. 
The drawback is that these results cannot be interpreted in a causal manner. 

With regard to the CEDIL studies, Handa et al. and Baliki et al. are using a combination of 
exploratory and testing approaches, both within-model and post-analysis, to explore which 
variables are the most relevant to characterising the better and worse responders. 

The second methodological approach is to use and adapt causal mediation methods. Machine 
learning methods have been proposed for estimating causal mediation effects (Farbmacher et 
al., 2021; Huber et al., 2018; Tchetgen and Shpitser, 2012) in a robust way, while adjusting for 



cedilprogramme.org  13 
  

large numbers of confounders. This approach can be used to more robustly suggest which 
intermediate factors are responsible for the response to an intervention. 

In mediation analysis, the natural direct and indirect effects are defined as: 

 
where M is a potential mediator variable, and Y (a, M (a’)) is the nested counterfactual: the 
potential outcome for treatment a when the mediator variable is set to its natural value under 
treatment at. Under similar causal assumptions to those used for estimating CATEs, these can 
be estimated in terms of observable quantities. Tchetgen and Shpitser (2012) proposed a 
triply robust estimator of the nested counterfactual, an analogue of the doubly robust 
estimator of the CATE, involving estimates of the outcome model E(Y |M = m, A = a, X = x), the 
propensity score P (A|X = x) and the mediator model E(M|X = x, A = a). Farbmacher et al. (2021) 
use a similar triply robust estimator, using flexible machine learning methods to obtain the 
plug-in estimates of the three component models. 

Chioda and Gertler, in their CEDIL-funded project, propose to extend the causal mediation 
approach even further, investigating some approaches to estimating HTEs as a function of 
mediators as well as baseline variables – a form of moderated mediation analysis. This has 
the potential to provide further understanding of which post-intervention and baseline 
variables are responsible for heterogeneity in treatment response between individuals. 
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5. Methodological challenges and future directions 

The machine learning models which have been adapted to work with causal inference 
methods are very recent methodological developments in the field of causal machine 
learning. As is usual in methodological work, these approaches have first been demonstrated 
in relation to simple scenarios with clean data. In the CEDIL studies, where the emphasis is on 
obtaining robust results in new intervention studies, the researchers additionally have to deal 
with extra issues which typically arise in real data analysis. A major issue, as always, is missing 
data, and the assumptions that must be made about missingness mechanisms. Another 
important aspect is multi-level correlation structure, due to grouped individuals (e.g. in 
villages or schools). This affects inference through the assessment of uncertainty. Obtaining 
valid confidence intervals in machine learning models, even in the absence of grouped data, is 
an active area of research. Athey and Wager (2019) demonstrate a sampling method for 
causal forests which accounts for the structure of grouped data. 

As the field develops, it will be interesting to see the use of models which use larger data 
structures in a single model, such as incorporating all follow-up times together in trajectory 
models. This approach gives higher statistical power to detect patterns and associations 
between outcomes and baseline or mediating variables, though often at the cost of making 
stronger assumptions about time-dependent trends in the model. A related point is 
accounting for correlated outcomes. These are very common in observational studies 
monitoring multiple related outcomes, such as developmental, educational or economic 
variables. Again, modelling multiple variables with some known structure results in higher 
power for statistical inference. 

All three of the studies in the CEDIL programme have large numbers of variables relating to 
potential mediating mechanisms, collected at multiple follow-ups after the intervention. 
Existing methods for investigating mediation deal with one variable at a time, which can give 
some initial insight into which intermediate factors are important in the causal pathway from 
intervention to outcome. In reality, there will be a network of causal relations between 
different mediating factors. Untangling the network of effects is a difficult task. Exploring 
methodologies for using multiple mediators in a single model is an active area of research in 
causal inference. Benkeser and Ran (2021), for example, propose a non-parametric method 
for estimating interventional mediation effects using machine learning. 

Very often, machine learning methods are proposed as purely data-driven approaches where 
new hypotheses can be generated from large data sets. Most of the analyses discussed so far 
in this paper follow this path. An important direction of future research will be to unite large-
scale models with existing theory. This could be done through the use of Bayesian models 
which can explicitly incorporate prior information and beliefs, resulting in inferences which 
combine existing theory and new data together. Another approach is to use causal machine 
learning approaches that focus on particular hypotheses of interest. This would be a 
hypothesis-testing approach, restricted to the testing of existing theory but in a manner that 
can flexibly model the large numbers of variables available. 
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6. Conclusions 

There is a recent and increasing field of research that is using machine learning methods to 
aid in the estimation of causal estimands. The three CEDIL-funded studies discussed in this 
paper have proposed to use causal trees and forests for the outcome model. However, when 
using robust estimation methods, in principle any flexible modelling approach can be used for 
the plug-in estimates of the outcome, mediator and propensity score models. It should be 
noted that care is needed in interpreting estimates of HTEs: these are CATEs, and cannot be 
defined without specifying a set of covariates to condition on. Estimated HTEs will differ 
depending on the set of covariates available to be modelled. 

Machine learning models (models which adapt to non-linear functions of covariates and 
accommodate interactions between covariates) are well-suited to obtaining flexible models of 
treatment effects, since the required functions are predictive models. If we are only interested 
in estimates of the treatment effects then we may not care about the specifics of how those 
functions are composed in terms of the covariates. However, if, as in the three CEDIL studies, 
we are also interested in the variables which are responsible for the differences in response 
to treatment, or in the mediating variables, then there are further issues. For example, if 
covariates are co-linear there will be many different possible functional forms that would give 
the same estimated treatment effects. Hence, deciding which are the most important effect 
modifiers and mediators is not so straightforward. 

An exciting future direction of research is to use and adapt mediation analyses for impact 
evaluation studies. Outcome variables measured at intermediate time-points may be treated 
as outcomes or mediators in different analyses. There are already some robust estimation 
methods available in the literature that use machine learning for flexible estimation. Multiple 
mediators are an ongoing research area. One of the CEDIL-funded studies is hoping to 
develop its own extension to causal mediation analysis, aiming to relax some of the causal 
assumptions that are usually made. This will be a very interesting result of the programme. 
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